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could solve the structures. Clearly, the default settings 
are not optimal for each individual structure. 

References 
DECLERCQ, J.-P., GERMAIN, G. & WOOLFSON, M. M. (1975). 

Acta Cryst. A31, 367-372. 
ELOUT, M. O., HAIJE, W. G. & MAASKANT, W. J. A. (1988). 

Inorg. Chem. 27, 610-614. 
GELDER, R. DE, DE GRAAFF, R. A. G. & SCHENK, H. (1990). 

Acta Cryst. A46, 688-692. 
GOEDKOOP, J. A. (1952). Computing Methods and the Phase Prob- 

lem in X-ray CrystalAnalysis, edited by R. PEPINSKY, pp. 61-83. 
The Pennsylvania State College. 

GORTER, S. (1988). Z. Kristallogr. 185, 216. 
GORTER, S. & BRUSSEE, J. (1992) Acta Cryst. C48, 344-347. 
GRAAEE, R. A. G. DE & VERMIN, W. J. (1982). Acta Cryst. A38, 

464-470. 
HEINERMAN, J. J. L., KROON, J. & KRABBENDAM, H. (1979). 

Acta Cryst. A35, 105-107. 
HOOGENDORP, J. & ROMERS, C. (1983). Carbohydr. Res. 114, 

169-180. 

KINNEGING, A. J. (1986). Thesis, Univ. of Leiden, The Nether- 
lands. 

KINNEGING, m. J. & DE GRAAFF, R. A. G. (1984). J. Appl. Cryst. 
17, 364-366. 

KITAXGORODSKY, A. I. (1950). X-ray Structure Analysis, Vol. III, 
p. 61. Moscow: Gostekhizdat. 

KNOSSOW, M., DE RANGO, C., MAUGUEN, Y., SARRAZIN, M. 
& TSOUCARIS, G. (1977). Acta Cryst. A33, 119-125. 

KOENERS, H. J., DE KOK, A. J., ROMERS, C. & VAN BOOM, J. H. 
(1980). Recl Tray. Chim. Pays-Bas, pp. 355-362. 

KOK, A. J. DE, BOOMSMA, F. & ROMERS, C. (1976). Acta Cryst. 
B32, 2492-2496. 

KOK, A. J. DE & ROMERS, C. (1975). Acta Cryst. B31, 1535-1542. 
KOK, A. J. DE, ROMERS, C. & HOOGENDORP, J. (1975). Acta 

Cryst. B31, 2818-2823. 
KONINGSBRUGGEN, P. J. VAN, HAASNOOT, J. G. & REEDIJK, 

J. (1993). In preparation. 
RANGO, C. DE, MAUGUEN, Y. & TSOUCARIS, G. (1975). Acta 

Cryst. A31,227-233. 
RANGO, C. DE, MAUGUEN, Y., TSOUCARIS, G., DODSON, G. G., 

DODSON, E. J. & TAYLOR, D. J. (1979). J. Chim. Phys. Phys. 
Chim. Biol. 76, 811-812. 

TSOUCAmS, G. (1970). Acta Cryst. A26, 492-494. 

Acta Cryst. (1993). A49, 293-300 

The Enumeration and Symmetry-Significant Properties of Derivative Lattices. II. 
Classification by Colour Lattice Group 

BY JOHN S. RUTHERFORD 

Department  o f  Chemistry, University o f  Transkei, Private Bag X1, Unitra, Umtata, Transkei, South Africa 

(Received 3 January 1992; accepted 15 July 1992) 

Abstract  

Dirichlet-series generating functions may be con- 
structed to enumerate the number of colour lattice 
groups of any order in the triclinic case. Appropriate 
factorization of the previously known lattice- 
enumerating functions gives the number of derivative 
lattices belonging to each of these lattice groups. 
These numbers are tabulated for all indices up to 20. 
Based on these Dirichlet functions, asymptotic esti- 
mates of the average values of the corresponding 
arithmetic functions may be made; these are 1.977 
for the three-dimensional colour lattice groups of 
order n and 1.823gh 2 for the derivative lattices having 
group structure C/gh® C/g@ C/. Such estimates can 
also be made for the relative abundance of groups 
with different numbers of cycles in their structure; a 
single-cycle structure occurs for roughly 92% of all 
derivative lattices. A similar argument shows that, in 
over 98% of cases, one properly chosen co-opted term 
suffices to ensure primitivity in diredt methods. 

Introduction 

The rapidly expanding field of mathematical 
chemistry, that is the application of graph theory and 

0108 -7673/93 / 020293 -08 $06.00 

combinatorics to chemistry, has had considerable 
impact on organic chemistry and even in inorganic 
chemistry has developed enough to warrant a recent 
major review (King, 1992). Despite this, there have 
been few attempts to apply such approaches to solid- 
state and crystal chemistry. This series of papers, 
together with some parallel work on graph-theory 
approaches to the bond-valence distribution in solids 
(Rutherford, 1990, 1992a), respresents an attempt to 
redress this situation and explore the potential that 
mathematical chemistry holds for the enrichment of 
crystallography. 

One important concept of combinatorics is the 
generating function, where the number of distinct 
objects with a given property is simply the coefficient 
of one term in the expansion of that function. The 
application of power-series generating functions to 
isomer-counting problems in chemistry derives from 
Cayley (1874). Their advantages, besides elegance 
and compactness, lie in their usefulness in deriving 
statistical information on, and asymptotic estimates 
of, the number of isomers (or other geometric objects) 
involved in the enumeration. 

Derivative lattices (Billiet & Bertaut, 1983) arise in 
practice both as real lattices (commensurate super- 
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lattices) and as reciprocal lattices in the considera- 
tion of phase-determining techniques and, in par- 
ticular, problems of rational dependence between 
large structure factors. In fact, it was originally to 
gain statistical information for a test of such rational 
dependence that Dirichlet generating functions were 
introduced to crystallography (Rutherford, 1992b). 
In that paper, the generating functions were derived 
to provide, for each Patterson symmetry of the basic 
lattice, the number of derivative lattices of equal index 
with the same point-group symmetry. The purpose of 
this second paper is to extend this approach of using 
Dirichlet functions to an enumeration of derivative 
lattices, now in the general case only, but in terms of 
their classification by colour lattice group (Harker, 
1978), rather than just by index. Not only will this 
provide much more detailed statistical information 
on the probable occurrence of various group struc- 
tures in practice, but the author intends in a future 
publication to show that it leads to a much improved 
method of attack on those enumeration problems 
recognized by McLarnan & Moore (1981) as colour- 
ing problems, where the N colours representing struc- 
tural elements ( N <  n) may be arranged according 
to their full permutation group. It is this situation, 
rather than the more restricted case of the colour 
symmetry group for which n = N, that is relevant to 
most counting problems involving structural deriva- 
tive lattices. 

Colour lattice groups 

The coloured symmetry groups have been the subject 
of research for a number of years. A detailed critical 
review of this area has been provided by Schwarzen- 
berger (1984). However, the specific question of the 
possible forms taken by their translational subgroups 
in N colours was only resolved by Harker (1978). He 
recognized that in three dimensions they were the 
Abelian groups of stable form Cfg h Q Cfg (~ Cf of order 
N=f3g2h,  f, g and h being positive integers. He 
further described these groups as being of three types, 
which he classified as follows. 

Type I. Here there are no adjacent points of the 
same colour, f >  1 and g > 1, and the group structure 
comprises the product of three distinct cycles. 

Type II. Points all of the same colour are adjacent 
in one set of parallel lines only, f =  1 but g > 1, and 
the group comprises the product of two distinct cycles. 

Type III. Points of the same colour occur in nets 
in the structure, f = g  = 1, and the group structure 
comprises a single cycle. 

Senechal (1979) placed these ideas within the gen- 
eral context of colour symmetry groups by recogniz- 
ing that the order k of any colour group must have 
the form 

k =/xA, 

where/z arises from colour permutations by the sym- 
metry of the basis lattice unit cell and A is the deter- 
minant of a sublattice of that basic reference lattice. 
Senechal also recognized that certain number-theo- 
retical constraints applied to the indices of such sub- 
lattices, such as 

A = p2+ q2 or A = p 2 _ p q  + q2 

for square and hexagonal lattices, respectively. This 
approach was extended by Jarratt & Schwarzenberger 
(1980) to provide a list of coloured plane groups for 
k<_15. 

The colour lattice groups were applied to possible 
magnetic structures by Kucab (1981), who showed 
that the number of distinct groups of order n could 
be enumerated using the Euler generating function 

D co 

go(x)= I-I ( l - x ; ) - ' =  Y yo(r) x~, 
j = l  r = O  

where yn(r) is the number of D-nary partitions of r. 
Here D is the number of dimensions (usually three) 
and if 

I 

n= I-I p~' 
i = 1  

then the total number of groups is 

I 

I-I To(r,). 
i = 1  

Kucab gives a number of formulae for specific values 
of D. 

Meanwhile, Rolley-Le Coz & Billiet (1980) had 
examined the triclinic-lattice preservation problem, 
i.e. the equivalence classes of rows and nets of the 
basic lattice with respect to the translation group of 
a derivative lattice. This led Rolley-Le Coz, Senechal 
& Billiet (1983) to consolidate much of this work by 
showing that the Abelian-group structure is an under- 
lying property of the specific derivative lattice, for 
the general lattice-preservation problem, irrespective 
of whether the marks on the individual basis lattice 
points represent colour, spin or some other relevant 
property. More recently, Rutherford (1988) investi- 
gated similar relationships holding within the 
reciprocal lattice and found that the essentially iden- 
tical algebraic structures could be applied, for 
example, to the symbolic addition phase-determining 
process. 

On the question of the number of distinct derivative 
lattices of index n for a given basic lattice, the 
required relationships were established in general by 
Bertaut & Billiet (1979), and the triclinic case was 
studied in detail by Billiet & Rolley-Le Coz (1980). 
The latter expressed their results in terms of restric- 
tions on the possible integral elements of standard 
triangular transformation matrices of determinant n. 
The number of such matrices may, in turn, be related 
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to the arithmetic functions that are the coefficients in 
the Dirichlet series (Rutherford, 1992b). 

Dirichlet-series generating functions 

This paper will make considerable use of special 
Dirichlet series, viz series of the type 

oo 

F ( s ) =  Z -" anti , 
n=l 

where F ( s )  is called the generating function of a,,  
the corresponding arithmetic function. We shall be 
interested in cases for which a, simply enumerates 
some property associated with the natural number n 
and in such cases the variable s has no real sig- 
nificance.* The Dirichlet series used in the present 
work are 'multiplicative' in the number-theory sense, 
that is the a, are multiplicative over the primes. In 
other words, 

aman = amn, 

provided m and n have no common factor. They 
include the Riemann zeta function 

oo 

~(s)= Y n-', 
n = l  

where a, takes the value 1 for all n, and its inverse 
130 

~' - ' ( s )= Y'. p . (n )n  -s, 
r t = l  

which involves the M6bius function tx(n), defined as 
tx(a) = 1 if a = 1, Ix(a) = ( - 1 )  r if a is the product of 
r distinct prime factors, i.e. if a is square-free, and 
~ (a )  = 0 otherwise, i.e. if a is divisible by the square 
of a prime. 

Each of these series can also be expressed as an 
infinite product over the prime numbers, for example 

~'(s) = l-I (1 - p - ' ) - ' .  
P 

We shall also use Dirichlet functions of the type 

~ ( s ) / ~ ( k s ) =  ~ qk (n )n  -s, 
n = l  

which enumerates a function qk (ti), the characteristic 
function of the set of k-free integers, that is qk(n)  = 0 
if n contains a repeated prime factor of the type pk 
and q k ( n ) =  1 otherwise, that is if n is 'k-free'. In 
particular, q2(n)= 1 if n is square-free and q2(n)= 

I~,(ti)l. 
We shall also make use of a general formula to 

express, in terms of factors of the index n, the arith- 
metic function enumerated by a product of Dirichlet 

* However, where F-~(s) represents a probability, as in Ruther- 
ford (1992b), s must take a value for which the Dirichlet series 
converges. 

functions. This requires the introduction of another 
arithmetic function, dk(n) ,  the generalized divisor 
function. This function represents the number of ways 
that n can be expressed as the product of k factors, 
any number of which may be unity, and where a 
different order of the factors is treated as distinct. If 
the j th  such representation of n has the form 

k 

H Cij, 
i = 1  

a product of Dirichlet functions Fi, which enumerate 
arithmetic functions f~, has the expansion 

n - -$ .  II E(s)= Y Y f(c,j 
i = l  n = l  j = l  ' = 1  

The techniques of asymptotic estimation used to 
determine the numbers of the various objects of inter- 
est for large values of the lattice index (and colour 
lattice group order), n, have been taken from 
Knopfmacher (1990). Knopfmacher is interested in 
enumeration within algebraic structures known as 
arithmetic semigroups, which have the properties: 

(1) each element has a unique factorization 

a o tr 
a = Pl tP2~p33. • • , 

where the p's are the primes of the system and the 
a's are positive integers; 

(2) there is a real norm such that II1= 1, Ipl> 1; 
(3) labl=lal lb l ;  
(4) the total number of elements of norm Ipl is 

finite. 
For an arithmetic semigroup there are many 

parallels with the prototype system of natural num- 
bers and, in particular, the multiplicative properties 
of Dirichlet-type generating functions will still be 
appropriate because of property (3). Thus we shall 
be interested in establishing whether a particular 
arithmetic function has a 'zeta formula' that can be 
applied to derive asymptotic estimates, as it must if 
it represents the number of elements of an arithmetic 
semigroup. 

The colour lattice groups, being the finite Abelian 
groups in another guise, do form such an arithmetic 
semigroup and they are enumerated by a zeta formula, 
which provides an asymptotic estimate of their num- 
ber. In fact, the work of Erd6s & Sykeres (1935) to 
resolve this particular problem was a major impetus 
to the development of this branch of number theory. 

As an illustration of the approach, we begin by 
constructing a generating function that enumerates 
the isomorphism classes of Abelian groups of order 
n, given the restriction of there being no more than 
D overall cycles. This number derives from Kucab 
(1981), but this alternative way of expressing it is 
more convenient for the arguments presented below. 
The total number of such classes, given no dimension 
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[Ii=~ T(ri), for restriction, is 
l 

n =  H p~'. 
i = 1  

Here y(r) is the total number of partitions of the 
prime power r. However, since we are restricted to 
D dimensions, the partition of each prime power in 
the canonical form of n into at most D parts is 
allowed. The corresponding Euler generating func- 
tion that enumerates such a partition of a number is 

D oo 

q~(x)= l-I ( 1 - x J )  - l =  Z Yo(r) xr, 
j = l  r = 0  

where yo(r) is the number of partitions of r into at 
most D parts. Now we may substitute p-S for x, where 
p represents any prime number. This gives 

[(1-p-~)(1-p-2~)...  ( 1 - p - m ) ]  -~ 

oo 

= 1 +  Z 'Yo(a)P -as. 
a = l  

We now use this expression to create the multiplica- 
tive function we require as a product over the primes: 

I-I [(1 -p-S)(1-p-2S). . .  ( 1 - p - ° ~ ) ]  -1 
P 

which gives, by application of the fundamental 
theorem of arithmetic, 

where n =l--[p Pi "i. This shows that this generating 
function does indeed enumerate the required arith- 
metic function. However, we can convert this product 
form to a simple product of zeta functions, 

H [ ( 1 - p - ~ ) ( 1 - p - 2 S ) . . .  (1 _ p - O , ) ] - i  
P 

=l-[ (1 - P - ~ ) - I  1-I (1 -p-2S)  - ' - - .  [I (1 - P - ° ~ )  -1 
P P P 

=~(s)~(2s)...~(Ds). 

We next look at the lattices themselves. We can 
derive an arithmetic function based on the Billiet & 
Rolley-Le Coz (1980) matrix formulation and the 
factorization scheme introduced above, now limited 
to D terms. The required arithmetic function is 

j = l  i=l  

if the j th  representation of n has the form 

D 

I-I Cq. 
i = 1  

The number of such lattices is enumerated by 

(Rutherford, 1992b) 

D 

I-I ~(s - i+ 1), 
i=l 

that is, ~'(s) ~ ' ( s -1 )  for D=2 and ~'(s) ~ ' ( s - 1 ) x  
s t ( s -2 )  for D = 3 .  

Since these systems of lattices are again enumerated 
by zeta formulae, we might ask the question whether 
they also each form an arithmetic semigroup. This is 
not the case, for although multiplicative in the primes, 
such a system does not exhibit unique factorization 
within the powers of one prime number. This i~ pre- 
cisely where the difficulties in the application of the 
inclusion/exclusion principle arose in Rutherford 
(1992b). 

Thus we have a system (the lattices) that is classified 
by another system (the colour lattice groups), both 
of which are enumerated by a zeta formula with D 
factors. It remains to derive such generating functions 
for the number of lattices in each class. Like 
Rutherford (1992b), we examine the very simple one- 
dimensional case first and subsequently the more 
complex cases. 

O n e - d i m e n s i o n a l  case  

The number of one-dimensional lattices of index n 
is one only for each n and is therefore enumerated by 

co 

~'(s)= ~ l x n  -s. 
n = l  

Since there is only one lattice for each n, there can 
be only one structure, which is that of the cyclic group 
C,. This is consistent with the number of such groups 
being enumerated by 

oo 

~(s)r~(2s)...,~(Ds)=~(s)= Z l x n - ~  

for D = I .  

T w o - d i m e n s i o n a l  case  

The number of distinct algebraic structures in two 
dimensions is given by the expansion of ~'(s)~'(2s), 
which is 

l + 2 - ~ + 3 - s + 2 × 4 - s + . . . + 6 - s + . . . + 2 × 8  -~ 

+ 2 × 9 - s + . . . + 2 ×  1 2 - s + . . . + 3  × 1 6 - s + . . .  

+ 2 ×  1 8 - ~ + . . . + 2 × 2 4 - ~ + . . . + 2 × 2 7 - ~ + . . .  

+ 3 × 3 2 - s + . . . + 4 × 3 6 - ~ +  . . . .  

Here only those leading terms that involve powers of 
the primes 2 and 3 only have been included to show 
the general nature of the terms. The structures com- 
prise all possibilities of the type C,/r® C r; f21 n. For 
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example, when n is 4, 32 and 36, the possible struc- 
tures are, respectively, 

C4 and C2@Ce; 

C32, C~6®C2 and C8@C4; 

C36, C18@ C2, C12@ (?3 and C6® C6. 

Harker (1978) tabulates all the possibilities for n -< 50. 
As for the number of lattices, we note that the 

function d2(n), which denotes the range of the inner 
summation, is simply the number of divisors of  n and 
therefore the arithmetic function corresponding to a 
product of two Dirichlet functions is of the form 

X f l (d ) f2 (n /d)= E f l (n/d)f2(d) .  
dJ,~ dl,, 

Hence the function that enumerates the lattices of 
index n is 

¢ ( s ) ¢ ( s - 1 ) =  Z l x ( n / d  n -s 
n= l  

oo 

= ~., Orl(n)n -s, 
n=l  

since the sum over divisors reduces to cry(n), the sum 
of the divisors of n. 

Now we have to identify how the overall oh(n) 
lattices are distributed over the possible structures. 
This breakdown depends on the arithmetic function 
q2(n), which is generated by sr(s)~'-l(2s). If we write 

¢(s)¢(s-  1) = [ g ' ( s ) U ' ( 2 s )  x ~ ' ( s -  1)]g'(2s), 

we can interpret the multiplication by ~'(2s) as rep- 
resenting an expansion in both directions by some 
factor f of a lattice of index n / f  2 and group structure 
Cn/f2 , to  generate a structure C,,/:® Cy. 

The term in the square brackets above, taken alone, 
enumerates a function 

~, (n/d)q2(d),  
din 

which is the number of distinct lattices belonging to 
a given colour lattice group. We shall call this number 
the class size and so we find that the various class 
sizes for a fixed n are given by the identity 

cr,(n) = ~" ~ (n/df2)qz(d). 
f2ln d [ (n / f  2) 

For example, for n = 12, we find the corresponding 
values of f to be 1 and 2. For f =  1, corresponding 
to C~2, we have 

Y. qE(d)(12/d) = 0 x  1+1 x 2 + 0 x 3 + l  x 4  
d]12 

+1 x 6 + l  x 12=24  

and, for f =  2 (C6® C2), we have 

E q2(d)(3/d)= l x  1+  1 × 3 = 4 ,  
all3 

Table 1. The number of derivative nets belonging to 
each two-dimensional colour-lattice group of structure 

C./i® Ci, f i n ,  and order n <- 20 

N u m b e r  

n f o f  n e t s  T o t a l  

2 1 3 3 
3 1 4 4 
4 1 6 

2 1 7 
5 1 6 6 
6 1 12 12 
7 1 8 8 
8 1 12 

2 3 15 
9 1 12 

3 1 13 
10 1 18 18 
11 1 12 12 
12 1 24 

2 4 28 
13 1 14 14 
14 1 24 24 
15 1 24 24 
16 1 24 

2 6 
4 1 31 

17 1 18 18 
18 1 36 

3 3 39 
19 1 20 20 
20 1 36 

2 6 42 

which together make 

trl(12) = 28. 

The effect of the arithmetic function on the right-hand 
side is to partition the divisors of n, expressed in the 
form n/df  2, according to the value o f f  for which d 
is square-free. Some results are given in Table 1. 

T h r e e - d i m e n s i o n a l  c a s e  

Here the structures comprise all possibilities of the 
type 

C, qf2g®Cfg®Cf ;f3ln, g 2 n / f  3, 

while the function that enumerates the lattices of 
index n is 

The breakdown by colour lattice group now depends 
on both qE(n), as before, and a new arithmetic func- 
tion, q3(n), which is generated by sr(s)~'-l(3s). We 
must now write 

~(s )~ ( s -1 )~ ( s -2 )  

= {[~'(s)/~'(3 s)] [ g'(s - 1 )/~r(2s - 2)]~(s  - 2)} 

x ~'(2s-2)sr(3s).  

We now have two types of expansion from a one-cycle 
structure to consider. These are the expansion in one 
net by a factor g in each direction, represented by 
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¢ ( 2 s -  2), and an expansion by a factor f in all three 
dimensions, given by ¢(3s). The term in the bracket 
above now enumerates a function, 

d3(n) 
E q3(cij)q2(c2j)c2jc2j, 

j = l  

by use of the formalism as before, and so we now 
have the enumerating identity 

d3(n/f3g2) 
E (n /d )2° ' , (d )  = E ~., g2 E q3(cu) 

al, f 3 l n  g2[(n/f3) j = l  

X q2(c2j)c2jc]j • 

We may now write the class size as 

d3(n/f3g2) 

S(n, f ,  g ) =  g2 E q3(co)q2(c2.i)c2jc2.i, 
j = l  

where the factor g2 arises from the multiplication by 
the function ~ ' (2s-  2), since 

~ ( 2 s - 2 )  = 1 + 4 x 2 - 2 s  +9  x 3-2s + 16 x 4-2s + . . . .  

For example, we have three possible structures for 
n = 24, C24, C12® C2 and C6® C2® C2. In each case, 
we run through the factorization of k = (n / f3g  2) in 
the sequence l x l x k . . . l x k x l . . . k x l x l .  

C24. Here, f =  g = 1 and 

d3(24) 
S(24, 1, 1 )=  12 ~ q3(co)q2(c2j)c2jcEj 

j = l  

= 12(576+288+ 1 9 2 + 0 + 9 6 + 0 + 0  

+ 0 + 1 4 4 + 7 2 + 4 8 + 0 + 2 4 + 0 + 6 4  

+ 3 2 + 0 + 0 + 3 6 +  18+ 1 2 + 6 +  16 

+ 8 + 0 + 0 + 0 + 4 + 2 + 0 )  

= 1638. 

C12@ C2. Here, f =  1 and g = 2 and 

d3(6) 
S(24, 1 ,2 )=22  E qj(co)qE(CEj)CEjC2j 

j = l  

= 2 2 ( 3 6 + 1 8 + 1 2 + 6 + 9 + 3 + 4 + 2 + 1 )  

= 364. 

C6® C2® C2. Here, f =  2 and g = 1 and 

d3(3) 
S(24,2,  1 )=  12 ~. q3(cu)qE(CEj)CEjC~j 

j = l  

= 12(9+3+1)  

= 13. 

The total number of lattices of index 24 is 

T. (24 /d)  2 try(d) = 2 0 1 5 =  1638+364+ 13. 
d 124 

Some results are given in Table 2. 

Table 2. The number of derivative lattices belonging 
to each three-dimensional colour-lattice group of  
structure c . /  s2~ ® cs~ ® cs, f 3 l n, g 2 l ( n / f 3 ), and order 

n_<20 

N u m b e r  
n f ,  g o f  lat t ices Tota l  

2 1,1 7 7 
3 1,1 13 13 
4 1,1 28 

1,2 7 35 
5 1,1 31 31 
6 1,1 91 91 
7 1,1 57 57 
8 1,1 126 

1, 2 28 
2,1 1 155 

9 1,1 117 
1,3 13 130 

10 1,1 217 217 
11 1,1 133 133 
12 1,1 364 

1, 2 91 455 
13 1,1 183 183 
14 1,1 399 399 
15 1,1 403 403 
16 1, 1 504 

1, 2 124 
1,4 16 
2,1 7 651 

17 1,1 307 307 
18 1,1 819 

1,3 91 910 
19 1,1 381 381 
20 I, 1 868 

1, 2 217 1085 

Asymptotic estimation 

Knopfmacher  (1990) gives a number of formulae for 
the asymptotic estimation of arithmetic functions 
enumerated by Dirichlet series, which include error 
estimates. We shall ignore the error estimates. The 
formula we shall apply is that 

F ( s ) = ~ ( s - w )  I-If(s)  
i 

enumerates an arithmetic function having asymptotic 
density 

nW i - l f ( w +  l), 
i 

provided each Dirichlet function f is absolutely con- 
vergent for the argument (w+  1). In fact, since the 
cases we are considering involve only zeta functions, 
they have the form 

F ( s ) = ~ ( s - w )  I-I ~[ai(s-bi)] ,  
i 

which corresponds to the asymptotic density 

n ~ I-I ~ [ a , ( w - b , +  1)] 
i 

provided ai - 1 and 0 -< bi -< w for all i. 
The first result we require is one that refers to the 

number of classes of Abelian groups. This result was 
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derived by Erd6s & Sykeres (1935), 
co 

1-I ~'(r)= 2 .29485. . .  
r = 2  

in the unrestricted case or 

D 

1-I ~(r) 
r = 2  

when the group structure is restricted to at most D 
cycles. Specific values of  interest are 

~'(2) = 7r2/6 = 1.64493. . .  ; D = 2 

and 

~'(2)~'(3) = 1.97730. . .  ; D = 3. 

The number of  lattices of given index involves a 
product of  zeta functions for which the smallest argu- 
ment is s - D + l  and therefore we expect the 
asymptotic density to be proportional to n °-~. In 
fact, it is 

D 

n°-' l]  ~(r). 
r = 2  

These results show that the average class size is n D- 
However, we may refine this estimate considerably, 

for it is clear from Table 1 that, for given n, the class 
size decreases as f increases. This arises because each 
lattice having a structure with f >  1 derives from one 
with f =  1 by the expansion explicit in the function 
~'(2s). Thus the class size is independent of the factor 
f and can be derived by consideration of the single- 
cycle ( f =  1) structures only. As we saw above, the 
number of lattices of index n and structure C, in the 
two-dimensional case is enumerated by 

The function on the left gives the asymptotic density 

n~'(2)/sr(4) = (15/7r2)n = 1.51982. . .  x n. 

Now, to take all values o f f  into account, we simply 
replace n by its other factor h and find the asymptotic 
average of the class size to be 

1.51982. . .  x h. 

However, the actual class size will vary considerably 
about this average, being a minimum when h is prime 
and relatively large when h has many factors. 

We now examine the distribution of lattices among 
groups of  one cycle, two cycles and so on. The results 
show that in two dimensions the proportion of lattices 
with a one-cycle colour lattice group structure is 

~'-~(4) = 90/I7- 4= 0.92394 . . . .  

Extension of this argument gives, for D dimensions, 

a number of  one-cycle lattices 

D 

nD-I I- I ~(r)/~(r 2) 
r = 2  

and the relative density of  one-cycle colour lattice 
groups 

D 

I-I ~'-'(r~). 
r = 2  

This latter formula can be extended to the limit of 
large D, 

¢X9 

I-I ~'-1 (rE) = 0.92207 . . . .  
r = 2  

For D = 3 ,  the values are 1 . 8 2 3 2 4 . . . x n  2 and 
0.92209 . . . .  Similarly, an investigation of the vari- 
ation in class sizes in three dimensions gives, for the 
average, the formula 

{[~(2)~(3)]/[~(4)~(9)]}gh 2= 1 .82324 . . . x  gh 2, 

where the actual class size relative to this average 
depends on the number of factors of g and h. 

In three dimensions, the above approach may be 
extended in another way. The lattices in three 
dimensions that do not have a colour lattice group 
of three distinct cycles is enumerated by 

{[~'(s)/~'(3 s)][~'(s - 1)/~'(2s - 2)]~r(s - 2)}sr(2s - 2) 

or 
[ ~'(s)/~'(3s)] ~'(s - 1)sr(s - 2). 

The arithmetic function has asymptotic density 

n2~'(2)~'(3)/~'(9) 

and the proportion of  lattices in this category is 

~'-1(9) = 0.99800 . . . .  

This indicates that the three types of three- 
dimensional colour lattices occur in the ratio 

type I : type II : type III = 0.00200: 0.01447 : 0.92209. 

An application to direct methods 

The results for this general case can be applied equally 
readily to the reciprocal lattice, although the two may 
not be the same for specific higher symmetries that 
involve centrings. Rutherford (1988) has suggested 
that the process of origin determination in direct 
methods of  phase determination can be considered 
as imposing a structure equivalent to the colour-lattice 
structure of  a derivative lattice, in terms of which the 
symbolic addition process is modular. After origin 
determination (and enantiomorph selection where 
appropriate),  it is necessary to introduce additional 
phased reflections, the 'co-opted terms', to ensure the 
primitivity of the starting set used.* It is generally 

* See Rogers (1980) for a good explanation of this. 
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unders tood that more than  one such term may be 
required,  a l though typical ly examples  used require 
only one. This section is in tended to show the prob- 
abilit ies associated with the m i n i m u m  necessary num- 
ber of  such terms in the triclinic case. 

Since the same colour t ranslat ion groups apply  to 
the reciprocal lattice as to the direct lattice, their 
number  and relative f requency will be given by the 
same formulae  as above with the assumpt ion  that a 
typical data set is large enough for the asymptotic  
formulae to be closely approximated.  We can also 
make the correlation that if  a lattice belongs to a 
colour group compris ing one cycle only it will require 
one co-opted term and if  two cycles, two terms etc. 
However, the reciprocal sublatt ice imposed by the 
defining trio in the phase-determining  process must 
be of  odd index to resolve the origin ambiguity.  In 
such a case we must e l iminate  the prime 2 from our 
formulae,  by making  use of  the pr ime-product  form 

~'(s) = I-I (1 - p-S) -~ ' 
p 

with any funct ion ~'(s) replaced by 

I-I ( 1 - p - S )  -~ or (1-2-~)~ ' (s ) .  
p#2 

This is analogous  to the hand l ing  of centred lattices 
by Rutherford (1992b). For example,  while the pro- 
port ion of  all integers that are square-free is 

~'-~(2) = 6/zr 2 = 0 . 6 0 7 9 2 . . . ,  

the proport ion of  odd integers that are square-free is 

[(1 - 2-2) ~'(2)] -t = 8/7r 2 = 0.81057 . . . .  

On this basis,  the asymptot ic  average number  of  tri- 
clinic derivative lattices of  odd index is 

3 x ~ r ( 2 ) ~ ' ( 3 ) n  2 

and, since the fraction of  integers that are odd is ½, 
the fraction of  all lattices having odd index is 

½ x 3 x 7~'(2)~'(3)n2/~'(2)~'(3)n 2 = -~ x 3 x 7= 0.328125. 

Examina t ion  of  the lower part  of  Table 2 shows that 
this ratio is approximated  there. 

To return to the co-opted terms, the expres- 
sion [~'(4)~'(9)] -~ becomes (16/15) x (512/511) 
[~'(4)~'(9)] -~ and sr-~(9) becomes (512/511)~'-~(9). 
When evaluated,  these modif ied expressions give the 
ratio for the cases of  a m i n i m u m  of  one co-opted 
term, or of  two or of  three, to be 

0.98548:0.01447:0.00005. 
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Abstract  

The properties of  the representat ions of  the three- 
d imens iona l  point  groups spanned  by sets of  

0108-7673/93/020300-06506.00 

equivalent  bipoints  are s tudied (characters and reduc- 
tions); these representat ions are either pr incipal  
induced representat ions or monomia l  representat ions 
induced by the subgroups (stabilizet subgroups and 
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